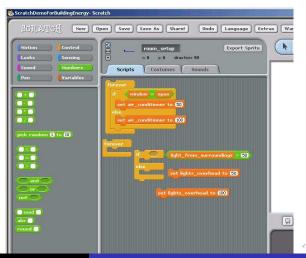
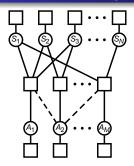
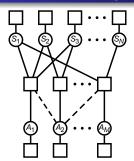
Whirlwind Review of Related Topics

David Dalrymple

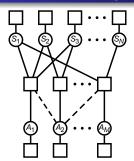

May 25, 2007


Programming Buildings with Building Blocks

Easy-to-use interface to program the intelligent infrastructure


Programming Buildings with Building Blocks

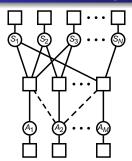
Easy-to-use interface to program the intelligent infrastructure



- S_1, S_2, \ldots, S_N sensors
- \bullet A_1, A_2, \dots, A_N actuators

- S_1, S_2, \ldots, S_N sensors
- A_1, A_2, \ldots, A_N actuators

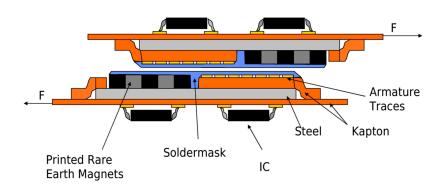
$$C(s_1, \ldots, s_N, a_1, \ldots, a_M) = \sum_{k=1}^{L} \phi_k(\mathbf{a}_k, \mathbf{s}_k) + \sum_{i=1}^{M} u_i(s_i) + \sum_{i=1}^{N} u_i(a_i)$$



- S_1, S_2, \ldots, S_N sensors
- A_1, A_2, \dots, A_N actuators

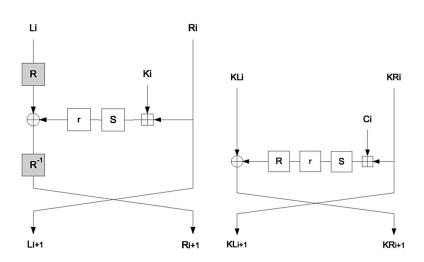
$$C(s_1, \ldots, s_N, a_1, \ldots, a_M) = \sum_{k=1}^{L} \phi_k(\mathbf{a}_k, \mathbf{s}_k) + \sum_{i=1}^{M} u_i(s_i) + \sum_{i=1}^{N} u_i(a_i)$$

 Cost function → Hamiltonian of a lattice gas → Statistical Mechanics


- S_1, S_2, \ldots, S_N sensors
- A_1, A_2, \dots, A_N actuators

$$C(s_1, \ldots, s_N, a_1, \ldots, a_M) = \sum_{k=1}^{L} \phi_k(\mathbf{a}_k, \mathbf{s}_k) + \sum_{i=1}^{M} u_i(s_i) + \sum_{i=1}^{N} u_i(a_i)$$

- Cost function → Hamiltonian of a lattice gas → Statistical Mechanics
- The problem can be solved using LOCAL rules that only involves nearest neighbors!


Distributed Actuation for Distributed Intelligence

Distributed Actuation for Distributed Intelligence

Scalable Encryption for Scalable Infrastructure

Scalable Encryption for Scalable Infrastructure

NW35

